
LPOP2018 XSB Position Paper

David S. Warren
Department of Computer Science

Stony Brook University, New York, USA

May 30, 2018

1 Introduction

In this position paper we first describe a classic logic programming approach to
the solution of (a portion) of the challenge problem involving RBAC. We use the
XSB Tabled Prolog Language and system [3], with ideas from Transaction Logic
[1]. Then we discuss efficiency and scalability issues for this implementation.
Finally we discuss issues that involve what would be required to use such an
implementation in a real-world application requiring RBAC functionality.

2 RBAC Challenge Problem in XSB

We describe our solution to the challenge problem. We use a module, prolog db,
that was recently added to the XSB system that allows a Prolog database (i.e., a
set of clauses) to be represented as a ground term, which we call a PDB. A num-
ber of operations are provided to access and update PDB’s, the salient ones here
being a) assert in db(+Clause,+PDB0,-PDB), which adds a clause to a PDB to
generate a new PDB, b) retract in db(+Clause,+PDB0,-PDB), which deletes
a clause from a PDB to generate a new PDB, and c) call in db(?Goal,+PDB),
which calls a goal in a given PDB, returning instances that are true in the given
PDB. For this RBAC application the clauses in a PDB will always be ground
facts. We use the Prolog Definite Clause Grammar (DCG) notation for writing
these programs, since it supports a convenient notation for writing rules that
define state transformations. The (implicit) state is always a PDB.

The description of the RBAC challenge problem is given at
https://drive.google.com/file/d/1q9W15kI624TI6pEbh2IMPDw6X5_5MiW7/view.
The XSB program for the RBAC challenge problem (minus the two MinRoleAssignment
functions in the Administrative component) is provided in the Appendix.

This is a relatively straightforward specification (and implementation) of
the problem in classical logic programming. Since the RBAC database is repre-
sented explicitly as a term in Prolog, general Prolog backtracking restores earlier
database states. So this makes post conditions, such as in create ssdSet, triv-
ial to implement: do the operation, and then check the post condition; if it fails,
the system automatically backtracks to restore the initial database state.

Note also that the tabling is correct even as the PDBs change, since the
appropriate PDBs, which are implicit in the DCG notation, are arguments to
the tabled predicates. One might want to abolish the tables periodically if space
becomes an problem.

1

2.1 Performance Issues

This implementation should be quite efficient as an XSB program. A PDB rep-
resents a set of clauses. The prolog db module uses a trie data structure to
store a PDB, with a variant of a radix tree at each branch point in the trie.
This makes the representation canonical, in that a given set of clauses is rep-
resented by the same term, regardless of the sequence of asserts and retracts
(in db) that generates that set. So all updates and accesses are done in log
time. Also, the terms representing PDBs are ground and so can use “interned
terms”, also sometimes known as hash-consing, which are implemented in XSB
[2]. Thus the terms are copied to a global store and uniquely stored; i.e. all
common subterms are shared. Then the Prolog code passes around what are
essentially pointers to tries in the global store. With this representation tabling
involves only the constant-time copying of a “pointer” into and out of a table.
Also equality comparison of two PDBs is simply a comparison of their point-
ers. The GetRoles(Shortest)Plan functions do an exhaustive search for plans,
which in some cases could be expensive, but the tabling does provide help. The
two MinRoleAssignments functions are not implemented because they seem to
require constraint solving, which is not XSB’s strength. An exhaustive search
could be implemented directly in XSB but would be uninteresting.

2.2 Interfacing with the System Environment

So this seems to us to be a reasonably elegant solution to the formal RBAC
problem as specified in (all but two functions of) the challenge. However, there
is the question of how this code might really be used in a much larger system
in which access control is only a small component. As described in the pre-
vious subsection, we don’t think that the performance and scalability of the
execution of the RBAC operations would present a problem. The more difficult
issues, we believe, involve data persistence and concurrent usage. There are
various potential solutions, but no single obvious one (at least to us.) And the
potential solution seem to require procedural, more than logical, thinking and
programming.

References

[1] A. J. Bonner and M. Kifer. An overview of transaction logic. Theoretical
Comput. Sci., 133:205–265, October 1994.

[2] D. S. Warren. Interning ground terms in XSB. In Proceedings of CICLOPS
2013, August 2013. In conjunction with ICLP’2013.

[3] D. S. Warren, T. Swift, and K. F. Sagonas. The XSB programmer’s manual,
Version 2.7.1. Technical report, Department of Computer Science, State
University of New York at Stony Brook, Stony Brook, New York, 11794-
4400, Mar 2007. The XSB System is available from xsb.sourceforge.net, and
the system and manual is continually updated.

2

A RBAC Implementation in XSB

:- import assert_in_db/3, retractall_in_db/3, call_in_db/2, size_db/2, new_dbi/1

from prolog_db.

%% rename update operations for clarity (and brevity)

add(Fact,DB0,DB) :- assert_in_db(Fact,DB0,DB).

del(Fact,DB0,DB) :- retractall_in_db(Fact,DB0,DB).

%% CORE RBAC

%% Make relation lookups into identity transactions (convenience)

%% i.e., they return the exact database they receive.

users(User,D,D) :- call_in_db(users(User),D).

roles(Role,D,D) :- call_in_db(roles(Role),D).

perms(Perm,D,D) :- call_in_db(perms(Perm),D).

ur(User,Role,D,D) :- call_in_db(ur(User,Role),D).

pr(Perm,Role,D,D) :- call_in_db(pr(Perm,Role),D).

%% update functions

%% to add and delete users...

addUser(User) --> \+ users(User), add(users(User)).

deleteUser(User) --> users(User), \+ ur(User,_), del(users(User)).

%% to add and delete roles...

addRole(Role) --> \+ roles(Role), add(roles(Role)).

deleteRole(Role) --> roles(Role), \+ ur(_,Role), \+ pr(_,Role), del(roles(Role)).

%% to add and delete permissions...

addPerm(Perm) --> \+ perms(Perm), add(perms(Perm)).

deletePerm(Perm) --> perms(Perm), \+ pr(Perm,_), del(perms(Perm)).

%% to add and delete users in roles

addUR(User,Role) --> users(User), roles(Role), \+ ur(User,Role), add(ur(User,Role)).

deleteUR(User,Role) --> ur(User,Role), del(ur(User,Role)).

%% to add and delete permissions that roles have.

addPR(Perm,Role) --> perms(Perm), roles(Role), \+ pr(Perm,Role), add(pr(Perm,Role)).

deletePR(Perm,Role) --> pr(Perm,Role), del(pr(Perm,Role)).

%% simple rename as required

assignedRoles(User,Role) --> ur(User,Role).

%% define user permissions by joining user-role and role-permission

userPermissions(User,Perm) --> ur(User,Role), pr(Perm,Role).

%%%

%% HIERARCHICAL RBAC (additions)

%% immediate subclass relation to identity transaction

%% (would be more efficient in other order..)

rh(RoleAsc,RoleDsc,D,D) :- call_in_db(rh(RoleAsc,RoleDsc),D).

%% update functions

%% add an inheritance fact if no loop is generated

addInheritance(RoleAsc,RoleDsc) -->

roles(RoleAsc),roles(RoleDsc),

add(rh(RoleAsc,RoleDsc)),

3

\+ trans(RoleAsc,RoleDsc).

%% define transitive closure for inheritance, and loop checking

%% note that the db is a (hidden) parameter, so this is correct over updates

:- table trans/4.

trans(Dsc,Dsc) --> [].

trans(Dsc,Asc) --> trans(Dsc,Par),rh(Asc,Par).

%% remove an inheritance fact.

deleteInheritance(RoleAsc,RoleDsc) -->

rh(RoleAsc,RoleDsc),

del(rh(RoleAsc,RoleDsc)).

%% add rule to include inheritance when determining authorized roles

authorizedRoles(User,Role) -->

trans(Role,ARole),

assignedRoles(User,ARole).

%%%

%% SSD

%% again make lookup operations into identity transactions, for convenience.

ssdCount(Name,Cnt,D,D) :- call_in_db(ssdCount(Name,Cnt),D).

ssdRole(Name,Role,D,D) :- call_in_db(ssdRole(Name,Role),D).

%% add ssdRole and check consistency

addSsdRoleMember(Name,Role) -->

roles(Role),

add(ssdRole(Name,Role)),

ssdConsistent(Name).

%% delete ssdRole

deleteSsdRoleMember(Name,Role) -->

ssdRole(Name,Role),

del(ssdRole(Name,Role)).

%% set SSD cardinality

setSsdSetCardinality(Name,Cnt) -->

(ssdCount(Name,OCnt) % if already has a cardinality

->({OCnt \== Cnt} % if cardinality is changed

-> del(ssdCount(Name,OCnt)),

add(ssdCount(Name,Cnt)),

ssdConsistent(Name) % check consistency after update

; [] % no change, no need to check consistency

)

; add(ssdCount(Name,Cnt)), % create initial cardinality

ssdConsistent(Name) % check consistency

).

%% ssd set ops

deleteSsdSet(Name) -->

ssdCount(Name,_),

del(ssdCount(Name,_)),

del(ssdRole(Name,_)).

create_ssdSet(Name,RoleList,Cnt) -->

\+ ssdCount(Name,_),

4

add(ssdCount(Name,Cnt)),

addSsdRoleMembers(Name,RoleList),

ssdConsistent(Name).

%% add role members

addSsdRoleMembers(_,[]).

addSsdRoleMembers(Name,[Role|Roles]) :-

roles(Role),

add(ssdRole(Name,Role)),

addSsdRoleMembers(Name,Roles).

%% define consistency.

ssdConsistent(Name) --> ssdConsistentAssigned(Name).

%% or if include authorized, would use the following clause:

%% ssdConsistent(Name) --> ssdConsistentAuthorized(Name).

%% consistent if not inconsistent

ssdConsistentAssigned(Name) -->

\+ ssdInconsistentAssigned(Name).

%% inconsistency is more easily defined

ssdInconsistentAssigned(Name) -->

ssdCount(Name,Cnt),

ssdAssignedRoleCnt(Name,_User,UCnt),

{UCnt > Cnt}.

%% aggregation predicate for counting roles

sum(A,B,C) :- C is A + B.

%% aggregate using sum (admittedly, a bit awkward...)

:- table ssdAssignedRoleCnt(_,_,fold(sum/3,0),_,_).

ssdAssignedRoleCnt(Name,User,1) -->

assignedRoles(User,Role),

ssdRole(Name,Role).

%% same as above but using authorized as opposed to assigned.

ssdConsistentAuthorized(Name) -->

\+ ssdInconsistentAuthorized(Name).

ssdInconsistentAuthorized(Name) -->

ssdCount(Name,Cnt),

ssdAuthorizedRoleCnt(Name,_User,UCnt),

{UCnt > Cnt}.

:- table ssdAuthorizedRoleCnt(_,_,fold(sum/3,0),_,_).

ssdAuthorizedRoleCnt(Name,User,1) -->

authorizedRoles(User,Role),

ssdRole(Name,Role).

5

%%%

%% Administrative RBAC (Planning functions)

%% Exhaustive search for a plan

:- table getRolesPlan/6.

getRolesPlan(User,Roles,Acts,PlanSet) -->

(hasAllRoles(User,Roles) % at the goal, so

->{new_dbi(PlanSet)} % no actions needed

; {member(Act,Acts)}, % for each action

call(Act), % perform it

getRolesPlan(User,Roles,Acts,PlanSet0), % search from new DB

{assert_in_db(Act,PlanSet0,PlanSet)} % succeeded, add this act

).

%% check goal state

hasAllRoles(_,[]) --> [].

hasAllRoles(User,[Role|Roles]) -->

authorizedRoles(User,Role),

hasAllRoles(User,Roles).

%% Search for shortest plan:

%% Same as above, but only keep plans with fewest actions

:- table getRolesShortestPlan(_,_,_,lattice(smaller_plan/3),_,_).

getRolesShortestPlan(User,Roles,Acts,PlanSet) -->

(hasAllRoles(User,Roles)

->{new_dbi(PlanSet)}

; {member(Act,Acts)},

call(Act),

getRolesShortestPlan(User,Roles,Acts,PlanSet0),

{assert_in_db(Act,PlanSet0,PlanSet)}

).

%% Plan2 is the smaller of Plan0 and Plan1

smaller_plan(Plan0,Plan1,Plan2) :-

size_db(Plan0,N0),

size_db(Plan1,N1),

(N0 =< N1

->Plan2 = Plan0

; Plan2 = Plan1

).

6

